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ABSTRACT 

Earth imaging satellites have typically been large systems with highly 

accurate and expensive sensors.  With the recent push for Operationally 

Responsive Space, Earth imagining has become potentially achievable with 

small and relatively inexpensive satellites.  This has led to the research currently 

underway to develop very small, low-cost imaging satellites that can produce 

useful Operational-level and Tactical-level imagery products.  This thesis 

contributes to that effort by developing a detailed design for the attitude 

determination system for a tactically useful earth-imaging nano-satellite.  Tactical 

Imaging Nano-sat Yielding Small-Cost Operations and Persistent Earth-coverage 

(TINYSCOPE) is an ongoing investigation at NPS, concerning using a nano-

satellite, based on the CubeSat standard, to achieve Earth imaging from LEO 

orbit.   

A detailed design of the attitude determination system includes sensor 

selection and characterization, as well as high fidelity simulation via 

MATLAB®/Simulink®.  The attitude determination system is based on an 

Extended Kalman Filter using multiple sensor types and data rates.  The sensors 

include a star tracker, sun sensor, gyroscope, and magnetometer.   
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I. BACKGROUND  

A. BRIEF HISTORY 

Since the very early days of satellite imagery, resolution and pointing 

accuracy have been key parameters of the satellite design.  Corona, America’s 

first Earth Imaging satellite [1], had a resolution of 8–10m.  This was eventually 

improved to 2–4m resolution through improved cameras and lower altitudes.  As 

subsequent generations of military Earth imaging satellites were being 

developed, the resolution continued to improve, which in turn lead to the need for 

higher accuracy pointing.  The new satellites used ever-increasingly complex and 

expensive attitude determination systems (ADS) to provide the ability to meet 

these new requirements.   

Today, commercial imagery satellites are going through the same trend in 

resolution.  They have improved in the past decade, from relatively low resolution 

at about 5m to about 0.6m [2].  At the same time, these commercial satellites are 

getting smaller and keeping costs to a minimum.  These two facts present new 

challenges to the ADS.  The traditional sensors are too big and expensive to be 

practical for the new satellites.  New sensors have been shrinking due to smaller 

electronics; however, this miniaturization is not keeping pace with the rapidly 

increasing demands on the ADS.   

The latest Earth imagers take the trend of shrinking satellites to a new 

level.  They are pico-satellites based on a new standard call CubeSats.  They 

push the bounds of small size and low cost.  Developed to provide cheap access 

to space and used primarily by universities, these satellites are measured in the 

tens of centimeters, weigh between one and ten kilograms, and usually cost in 

the tens of thousands of dollars.  CubeSats may become a viable Earth imaging 

platform to complement large and very high-resolution existing assets.  

Therefore, the ADS is becoming a much more important part of the design.  High 
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accuracy attitude determination is still in its infancy for CubeSats.  This thesis will 

attempt to develop an ADS that meets the needs of this new class of satellite. 

B. CUBESAT STANDARD 

In 1999, California Polytechnic University (Cal Poly), San Luis Obispo, and 

the Space Systems Development Laboratory (SSDL) at Stanford University 

collaborated to develop a standard for a pico-satellite design [3].  The goal was to 

enable rapid development and launch of satellites in the most cost effective 

manner.  The target audience was universities and research institutes and there 

are currently over 100 universities, high schools, private firms, and government 

agencies developing CubeSats.  The concept would enable groups to test new 

and innovative hardware and software on actual satellites instead of relying on 

simulations.  The standardized size and mass would enable a standardized 

launcher to be developed that would be suitable for secondary or tertiary launch 

opportunities.  It also enables the development of large numbers of experienced 

Astronautical Engineers.  A student can now, in principle, with sufficient available 

funding and professional support, design, build, test, and launch a satellite during 

his undergraduate or graduate school period.   

The CubeSat standard also allows for expansion from a single cube (1U).  

Multiple cubes can be attached together to form larger CubeSats like the 3U (3 x 

1 cubes).  The number of cubes attached together is really only limited by the 

launching mechanism.  Launchers that can handle 5U (5 x 1 cubes) and 6U (2 x 

3 cubes) are under development.  These larger CubeSats can accommodate 

payloads that are more complex.  The flexibility of this standard is also reflected 

in the fact that it is an open standard.  Not just the original creators, but also the 

entire community of users continuously review the standard.  An open standard 

can evolve to meet the needs of the community.  The latest revision to the 

CubeSat mechanical requirements (Rev 12) are summarized in Table 1 and 

Figure 1.  Another important design consideration for flexibility and utility was the 

electronics that would make up the working parts of the CubeSat.  The sizing of 
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the CubeSats allows for commercial electronics in the PC/104 form factor and 

commercial solar cells to be used.  This opens a large array of previously existing 

systems to be used in the CubeSats.  On the same point, it allows for easy 

development of new electronic boards and instruments using this form factor.   

 

Figure 1. 1U CubeSat Side Definition. From [4]. 

# Requirement Value Unit

1 X and Y dimensions  100±0.1  mm 

2 Z dimensions (1U) 113.5±0.3 mm 

3 Z dimensions (3U) 340.5±0.3 mm 

4 Maximum component protrusion from X or Y side 6.5 mm 

5 Mass (1U) 1.33 kg 

6 Mass (3U) 4.0 kg 

7 Center of gravity and geometric center difference 20 mm 

Table 1. CubeSat Mechanical Specifications. After [4]. 
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C. CUBESAT DEPLOYMENT 

Cal Poly has also created a deployment standard Poly Picosatellite Orbital 

Deployer (P-POD).  This is a box structure that houses the CubeSat during 

launch (see Figure 2).  It provides a standard attachment point to the launch 

vehicle and a deployment mechanism for the CubeSat.  It protects the CubeSat, 

launch vehicle and the primary payload.  This is particularly important because 

the owners of the primary payload can be very conservative and want 

guarantees that their very expensive satellite is not damaged by the secondary 

payload.  To ensure this, the P-POD has been tested to very high standards and 

proven through numerous launches that it does this job very well.  It has also 

proven to be very flexible.  It is compatible with a number of launch vehicles (see 

Table 2), and any CubeSat can be launched from it.  This means that if the 

manifested CubeSat cannot launch for some reason, another one can replace it 

very quickly and easily.  This is because any CubeSat made to the CubeSat 

Standard fits in a P-POD and the launch vehicle only cares about the P-POD.  

This combination of fitting many launch vehicles and flexible payload manifesting 

enables much easier access to space than ever before.  Currently the P-POD 

can hold up to three 1U or one 3U CubeSats.  There is currently research 

underway to develop a 5U P-POD and a 2 x 3 or 6U P-POD at Cal Poly. 

 

Table 2. Launch vehicles compatible with CubeSat P-PODs.  
From [3]. 



 

 5

 

Figure 2. CubeSat P-POD Unit. From [3]. 

The Naval Postgraduate School (NPS) is currently working with Cal Poly 

to meet the need for higher capacity CubeSat launches.  The collaboration is 

developing a high capacity CubeSat launcher that will be designed to attach to 

the Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA).  

The NPS CubeSat Launcher (NPSCuL) will be a collection of 10 P-PODs (see 

Figure 3) with coordinating electronics for CubeSat deployment.  NPSCuL will be 

able to deploy a combination of 1U, 3U, 5U, or 6U CubeSats.   

Cal Poly is not the only developer of CubeSat launchers; several other 

CubeSat launchers have been developed and launched [5].  Tokyo Institute of 

Technology’s Lab for Space Systems (LSS) has developed the Tokyo Pico-

satellite Orbit Deployer (T-POD).  Germany’s Astrofein has developed the Single 

Pico-Satellite Launcher (SPL).  Both of these are 1U deployers.  The most used 
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Cubesat launcher, other than the P-POD, is the eXperimental Push Out Deployer 

(X-POD) developed by University of Toronto Institute for Aerospace 

Studies/Space Flight Laboratory (UTIAS/SFL).  At least six X-PODs have 

launched to date.  They come in a variety of configurations including 1U, 3U, and 

the X-POD DUO holds a satellite 20 x 20 x 40 cm.  NASA has even started 

developing a CubeSat launcher to help further develop their CubeSat program.  

They are specifically designing a 6U or “Six Pack” deployer.   

 

 

 

Figure 3. NPSCuL Model. From [6]. 

D. SURVEY OF CUBESAT ATTITUDE DETERMINATION SYSTEMS 

The majority of the CubeSat mission that have launched so far have some 

sort of attitude sensing (see Table 3).  However, these sensors are usually low 

accuracy sensors like magnetometers or sun sensors.  This is due to several 

factors.  First, most of the missions flown so far do not have active attitude 
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control,  which leads to the assumption that attitude determination is also of little 

use.  Second, most of the CubeSats with active 3-axis control typically use only 

magnetorquers.  These provide a simple low-cost control but are also low 

accuracy; again, no need for high accuracy attitude determination.  Finally, the 

high accuracy ADS is much more complex and expensive to implement.  A very 

high accuracy sensor (<100 arcsec), like a star tracker, has yet to be flown.  

There are several currently in development specifically for CubeSats, but only 

one currently commercially available that can fit in a CubeSat.   

 

Table 3. CubeSat Attitude Determination Methods. After [5]. 
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Another dimension to this is the nearly complete lack of a pre-packaged 

ADS.  Until August of 2009, there was only one ADS available on the market.  It 

was the Pumpkin IMI-100 ADACS (Attitude Determination and Control System).  

Since then, another system has been introduced.  It is the SFL CubeSat 

Compact 3-Axis Attitude Actuator and Sensor Pack with Sinclair Interplanetary 

(SFL ADCS).  Both of these will fit the CubeSat Standard and provide attitude 

determination and control of about one degree.  They differ in included 

equipment and performance. 

1. Pumpkin IMI ADCS 

Pumpkin, Inc. sells this system as a kit [7].  It includes the IMI-100 ADACS 

developed by IntelliTech Microsystems, Inc. (IMI), a magnetometer, and custom 

software.  A separate sun sensor can also be supplied, but the standard setup 

uses only designated solar cells on the CubeSat.  This sun sensor setup turns 

the entire CubeSat into a 3-axis sun sensor.  The software simply takes the 

calibrated analog signal from the three sides of the CubeSat that can see the sun 

and uses that as the sun vector.  The magnetometer is a PNI Micromag3 with a 

32 nT resolution.  It must be mounted outside of the IMI-100 to get uncorrupted 

data.  The IMI-100 control equipment consists of three reaction wheels and three 

torque coils both orthogonally arranged.  The reaction wheels can provide 1.11 

mNms of momentum and 0.635 mNm of torque.  A more powerful ADACS is also 

available—the IMI-200, which provides 2.23 mNm of torque and 10.8 mNms of 

momentum [8].  These two systems are compared in Table 4.  A microprocessor 

is integrated into the package to perform all the attitude calculations and control 

of the actuators.  A pointing accuracy of 1° is advertized with the supplied 

sensors.  Higher accuracy is also claimed possible using a Ring Laser Gyro 

(RLG) and a star tracker.   
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  IMI-100 IMI-200 Units 
 Momentum 

Storage 
1.1 10.8 mNms 

 Max Torque 0.635 2.23 mNm 
 Dimensions 10x10x79 7.6x7.6x7 Cm 
 Mass 907 915 Gm 
 Power (max) 4.32 4.32 W 
 Suitable SC Mass 9 18 kg 

Table 4. Specifications of IMI-100 and IMI-200. After [7][8]. 

 

Figure 4. 2U CubeSat with IMI-100 ADACS (left) and IMI-100  
ADACS alone (right). From [7]. 

2. SFL ADCS 

This system is also an actuator and sensor package designed for 

CubeSats [9].  This ADCS has three reaction wheels and three magnetorquers, 

arranged orthogonally, like the IMI.  It also comes with a magnetometer and six 
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sun sensors.  It, however, does not come with a computer or software.  The 

reaction wheels are made by Sinclair Interplanetary [10] and are comparable to 

the IMI-200 with 10 mNms of momentum and 1 mNm of torque.  There are four 

sun sensors integrated into the main box with two additional sensors provided to 

be placed on the CubeSat elsewhere.  The magnetometer comes on the 

deployable boom to prevent magnetic interference from the satellite.  Actuator 

and sensor specifications are listed in Table 5.  This ADCS also has an 

advertized pointing accuracy of 1–2° rms.   

 

Reaction Wheel Value Unit Magnetorquer Value UnitSFL 

ADCS Momentum Storage 10 mNms Dipole ~0.1 Am2

 Max Torque 1 mNm    

 Dimensions 5x5x3 cm Dimensions 8x8x0.4 cm 

 Mass 120 g Mass 100 g 

 Power (Max) 0.7 W Power (Max) 170 W 

 Sun Sensor Value Unit Magnetometer Value Unit 

 Resolution <0.5 ° Dynamic range ±100 μT 

 Accuracy <1.5 ° Resolution 15, 30 nT 

 Dimensions 3x3x1 cm Dimensions 2x4x2 cm 

 Mass <6 g Mass <30 g 

 Power <0.175 W Power <0.025 W 

Table 5. SFL/Sinclair ADCS Specifications. After [9][10]. 

A note for both of these systems is they only provide good attitude 

determination in sunlight.  So, if the CubeSat goes into eclipse, which nearly all 

will, the attitude solution is either degraded, propagated with a model, or simply 
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set to a nominal value.  This issue is being addressed now by different 

institutions by incorporating other sensors, i.e., Star Tracker or Horizon Sensor, 

and new algorithms.   

E. TINYSCOPE REQUIREMENTS 

The requirements for TINYSCOPE were originally derived in [11], further 

refined in [12].  These requirements are the basis of this ADS design.  However, 

the research here will benefit any nano or pico-satellite that requires either high 

accuracy attitude knowledge or data fusion of several different attitude sensors.  

The primary objective of this thesis is to design and implement a Kalman Filter 

that uses several separately developed techniques to combine different types of 

sensor data in a computationally efficient manor and produce an attitude solution 

that is significantly more accurate than any one of the sensors alone.  The 

secondary objectives of this thesis are to implement realistic simulations of the 

various sensors used by the Kalman Filter and to generally increase the fidelity of 

the current Simulink® simulation model.   
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II. SELECTION OF ATTITUDE DETERMINATION HARDWARE 

A. PURPOSE  

The development of high accuracy attitude determination for CubeSat 

class satellites is still new.  The accuracy that is demanded by TINYSCOPE is 

greater than any other satellite of comparable size that has flown thus far.  This 

means that better sensors must be developed or sensors that existed must be 

used in such a way to obtain better results. 

B. BASIC ADS DESIGN 

The ADS developed for this thesis uses commercially available (COTS) 

sensors.  Only minor modification will need to be done to select parts.  It will also 

be robust using five different types of sensors to ensure continuous solutions and 

allowances for sensor failure.  The key part of this is fusing the data in such a 

way that the attitude knowledge is more accurate than any of the individual 

sensors.  The ADS also cannot be dependant on one sensor to provide 

acceptable accuracy.  Having a number of different types of sensors and using 

an Extended Kalman filter is the selected solution for the ADS. 

The sensor types selected are mostly inertially referenced. The one 

exception to this is the magnetometer, which is referenced to the Earth’s 

magnetic field.  The other sensors will include gyroscopes, sun sensors, and star 

trackers.  A GPS receiver will also be incorporated.  However, it will not be used 

for the attitude determination; it will be part of the orbit determination system 

(ODS).  This system will not be developed in great detail for this thesis.   

C. COMPONENT SELECTION 

An extensive search for sensors that would provide high accuracy attitude 

knowledge for a CubeSat class satellite was conducted over the six-month period 

of September 2008 to March 2009.  There were four primary criteria used to 

determine what sensor would be most useful.   
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1. Size.  Given the CubeSat standard sensors need to be able to fit inside 
less than 1U.   

2. Power.  A CubeSat can only produce approximately twenty watts of 
power total.   

3. Weight.  Due to the CubeSat standard.   

4. Performance.  This was the deciding factor for many of the sensors.   

Fortunately, the first three criteria tend to go hand in hand, simplifying the 

selection process.  Other considerations were cost, the material properties, and 

electrical interfaces of the sensor, but these were lower order factors.   

1. Inertial Measurement Unit 

The Inertial Measurement Unit (IMU) is one of the key components to the 

ADS.  It is actually a combination of two different sensors.  The IMU has 

gyroscopes that measure the angular rate of the spacecraft and accelerometers 

that measure acceleration.  It will provide attitude information from this sensor 

suite in a near continuous fashion.  The EKF will specifically use the gyroscope 

information to estimate the attitude when the other sensors are not providing 

information.  This will be discussed in greater detail in Chapter VI.  The 

accelerometers are not currently being used, but could be integrated into the 

attitude estimation or the orbit estimation later.  This type of IMU is used often on 

unmanned aerial vehicles (UAV) which do not generally require highly accurate 

sensors for flight control.  Therefore, there is no real driver for the industry to 

produce very accurate, low noise gyroscopes and accelerometers.  The 

gyroscopes performance was graded primarily on two characteristics: the 

resolution and the noise.  The resolution had to be smaller than the required 

angular rate knowledge.  The noise only had to be as small as possible because 

it would be compensated with filtering.   

From the beginning, commercial MEMS sensors were the primary focus of 

the selection process.  In general, they are the only gyroscope technology that 

meets the first three criteria for this sensor.  The problem is they generally have 

more noise than the other types of gyroscopes do.  The IMU that was eventually 
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selected was the Analog Devices ADIS16405 (see Figure 5).  A summary of the 

IMU specifications can be seen in Table 6 and the full specification sheet is in the 

Appendix.  This IMU has several very useful features that could be exploited in 

the future.  It has three dynamic ranges that are set be software.  This means 

that during different modes of satellite operation the dynamic range could be 

changed to suite the expected angular rate range.  The ADIS16405 also has low-

pass filtering.  A Bartlett window is provided by two cascaded averaging filters.  

The number of taps for each averaging stage can be set through software.  Bias 

compensation can be done with either an automatic routine on the IMU or 

through manual settings.  Both are done through software settings.   

 

Gyroscope Value Unit 

Dynamic Range ±300, ±150, ±75 °/s 

Scale Factor 0.05, 0.025, 0.0125 °/s 

Initial Bias Error ±3 ° 

Bias Stability 0.007 °/s 

Angular Random Walk 2 °/√hr 

3 dB Bandwidth 330 Hz 

Dimensions 23 x 23 x 23 mm 

Mass 16 g 

Power 0.35 W 

Table 6. Analog Devices ADIS 16405 Gyroscope Characteristics. 
After [13]. 
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Figure 5. ADIS16405 with Evaluation Board. 

2. Magnetometer 

This sensor provides coarse attitude information to the ADS.  

Magnetometers used for attitude determination alone cannot achieve highly 

accurate results.  This is because they need a reference model to compare the 

measurement to produce a usable vector.  This magnetic field difference vector 

can then be used to determine the spacecraft’s attitude with respect to the Earth.  

The magnetometers have become very accurate and small; however, the 

reference models are not very accurate.  The best models use a twelve pole 

equivalent model, but even these cannot completely describe the Earth’s 

complex and time changing magnetic field.  One degree rms is usually 

considered to be about as accurate as a magnetometer ADS can get.  It has also 

been shown that information provided by the magnetometer can be used to 

determine the satellite orbit [14].  This will not be pursued in this thesis, but could 

be added to the ODS later. 

The magnetometer was graded on noise and resolution like the 

gyroscope.  The resolution had to be small enough that the changes in the 

Earth’s magnetic field could be detected in low Earth orbit.  The noise had to be 

low enough that it did not drown out the measurements, but it too is filtered.  The 

magnetometer selected is actually integrated into the ADIS16405 IMU.  It 
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provided comparable performance to other magnetometers considered at no 

extra cost.  The characteristics of the magnetometer are summarized in Table 7. 

 

Magnetometer Value Unit 

Dynamic Range ±3.5 gauss 

Scale factor 0.5 mgauss 

Initial Bias Error ±4 mgauss 

Output Noise 1.25 mgauss rms

Dimensions 23 x 23 x 23 mm 

Mass 16 g 

Power 0.35 W 

Table 7. Analog Devices ADIS16405 Magnetometer Characteristics. 
 After [13]. 

3. Sun Sensor 

The sun sensors provide an important measurement for sun pointing 

mode and coarse measurements during the normal mode of operation.  Multiple 

sun sensors will be needed because each one can only provide two axes of 

information.  They are typically arranged to provide full (or nearly full) spherical 

coverage.   

Selection for the sun sensor was primarily determined by accuracy and 

size.  Most sun sensors that have higher accuracy are much too large for a 

CubeSat.  Other sensors that were either very small or integrated into solar cells 

were too inaccurate.  The sun sensor selected is the Sinclair Interplanetary SS-

411 Sun Sensor.  The characteristics are summarized in Table 8 and the full 

specification sheet is in the Appendix.   
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Sun Sensor Parameter Value Unit

Accuracy ±0.1 ° 

Field of View ±70 ° 

Bandwidth 5 Hz 

Dimensions 34 x 32 x 21 mm 

Mass 34 g 

Power 0.075 W 

Table 8. Sinclair Interplanetary SS-411 Characteristics. After [15] 

 

 

Figure 6. Sinclair Interplanetary SS-411. 
From [15]. 

4. Star Tracker 

The star tracker provides the high accuracy, or fine pointing, information 

for the ADS.  These sensors are essentially cameras that take pictures of stars.  

They use the star light intensity and the relative positions to determine what stars 

are in the picture.  Once this is established, through one of many possible 

algorithms, the sensor attitude can be determined.  Each star tracker generally 

provides three axes of information, so only one unit is necessary.  The accuracy 
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of a typical star tracker on a large spacecraft is a few arcseconds (arcsec).  This 

accuracy necessarily degrades as the sensor gets smaller and the optics less 

refined.   

The criteria for selection of the star tracker were primarily size and power.  

This is because very few of these sensors can even fit in a CubeSat.  Ultimately, 

though, accuracy and availability were the determining factors.  A rough estimate 

of the required accuracy of less that 100 arcsec1 was made during the selection 

process.  The selection based on these criteria became easy because at the time 

only one available product existed, the Commtech AeroAstro Miniature Star 

Tracer (MST) [16] (see Figure 7).  Unfortunately, even though this is a relatively 

inexpensive star tracker, it is still way outside a university budget, at roughly 

$250,000.002.  Therefore, this sensor will not be purchased, but its 

characteristics are summarized in Table 9, and the full specification sheet is in 

the Appendix.   

 

Figure 7. Commtech AeroAstro MST. From [16]. 

 

                                            
1 100 arcsec = 0.028° 

2 $250k is a ROM quote, but is (currently) accurate and includes the baffle design. 
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Star Tracker Value Unit 

Accuracy ±70 (3-axes 3σ) arcsec 

Sensitivity Up to 4th magnitude stars  

Dimensions 5.4x5.4x7.6 cm 

Mass 425 g 

Power < 2 W 

Table 9. AeroAstro MST Characteristics. After [16]. 

5. GPS 

The GPS unit will provide position and timing information for the satellite.  

The position information will be the primary part of the ODS.  The timing will be 

used for the spacecraft computing capabilities in general.  Small size and low 

power were again the main factors in reducing the number of possible 

candidates.  Both terrestrial and space qualified units were considered to help 

enlarge the pool of possibilities.  The terrestrial units need minor modifications to 

work in space, so this was not of great concern.  The GPS receiver selected is 

the NovAtel OEMV-1G-L1-A (seen in Figure 8).  It is a terrestrial GPS that has 

been modified and flown in space previously.  It was chosen because of its 

relatively low power requirements and good performance characteristics (see 

Table 10).  Of interest, the GPS calculations only use approximately 40% of the 

processing power.  The version with the Application Programming Interface (API) 

was ordered to allow user defined programs to run on the GPS processor.  The 

excess processing power could be used to run the ODS.  The full specification 

sheet is in the Appendix. 
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GPS Value Unit 

L1 SEP3 1.8 m 

Time Accuracy 20 ns rms

Dimensions 46x71x13 mm 

Mass 21.5 g 

Power 1 W 

Table 10. NovAtel OEMV-1G Characteristics. After [17].  

 

 

 

Figure 8. NovAtel OEMV-1G-L1 with L1\L2 Antenna. 

                                            
3 Spherical Error Probability (SEP), means the true position will be within a sphere with the 

given radius fifty percent of the time.   



 

 22

THIS PAGE INTENTIONALLY LEFT BLANK 



 

 23

III. EXPERIMENTAL CHARACTERIZATION OF SELECTED 
SENSORS 

There are many ways to determine the noise sources of an instrument.  

Two of the most popular are the Power Spectral Density (PSD) and the Allan 

variance.  This thesis will use the Allan variance because it is easily computed 

and there is existing data from the manufacturer available. 

A. ALLAN VARIANCE 

The Allan variance, an accepted IEEE standard for gyroscope 

specifications, is a time domain analysis technique that can be used to find the 

characteristics of the noise processes in an instrument.  The Allan variance 

technique uses a clustering method.  It divides the data into clusters of specific 

length and averages the data in each cluster.  It then computes the variance of 

each successive cluster average to form the Allan variance.  Each noise source 

has a different correlation time.  By choosing the correct correlation time or 

cluster length, the desired noise source variance can be calculated.  The Allan 

variance is typically plotted as the root Allan variance, 2
A A  on a log-log 

scale.  The different noise sources can be discriminated by examining the 

varying slopes of the root Allan variance.  A more in depth discussion of Allan 

variance can be found in annex C of [18] or [19].  The general equations for the 

Allan variance forming K clusters from N data points taken at fs samples per 

second with M points per cluster are as follows: 
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Where ‹› is the ensemble average and /M sM f  is the correlation time. 
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Figure 9. Piecewise Representation of Hypothetical Gyro in Allan Variance.
 From [18]. 

The following equations have been determined to calculate the variance 

for the Angular Random Walk (ARW) and the Rate Random Walk (RRW) noise 

sources in a gyro and can be found in [18].  The coefficients can be directly 

determined from the root Allan variance in Figure 9.   

 
 

2
2
ARW

N 



 (1.3) 

 
 

2
2

3RRW

K   
 (1.4) 

where N is the variance coefficient at 1  along the +1/2 slope and K is the 

variance coefficient at 3  along the -1/2 slope.  These two noise sources are 

the primary noise sources being modeled in Chapter IV. 

The Allan variance algorithm used to estimate noise parameters for the 

gyros was from MATLAB®Central, an open exchange of files for MATLAB® users.  

The specific code, allan v1.71, developed by M. A. Hopcroft [20] uses the basic 

method of Allan variance calculation developed in [19] and has been validated 

using the example data form [21].   
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B. CHARACTERIZING 

1. Gyro Noise 

A test was performed on the IMU to measure the noise characteristics of 

the gyroscopes.  The test procedure from section 12.11 of [22] was referenced to 

setup and perform each test.  The IMU was sampled with evaluation board using 

a USB interface and software provided by Analog Devices, Inc.  The evaluation 

setup was performed per [23].  All tests were conducted at ambient temperature; 

no environmental temperature control equipment was used.  To account for this 

the temperature was allowed to stabilize and was also recorded for each test.  

The magnetic field was also not controlled due to lack of equipment to do so.  All 

testing was done in a static condition.  Several tests were conducted using 

different sample rates, number of samples, and filtering settings (number of 

averaging taps).   

 Gyro Data 1: Data were taken from only the Z axis gyro.  It was 
intended to verify the method used here by comparing the calculated graph to 
the graph provided on the specification sheet.  The following parameters were 
used: 

 Sample rate: 115 Hz (10 ms delay) 

 Sample points: 2,000,100 (~ 4.8 hrs of data) 

 Gyro Range: 300 °/sec 

 Filter taps: 1 (minimum low-pass filtration) 

 Gyro Data 2: Data were taken from only the Z axis gyro.  It will 
calculate the noise coefficients for the expected operation mode with no 
filtering.  The following parameters were used: 

 Sample rate: 111 Hz (10 ms delay) 

 Sample points 2,000,100 (~4.8 hrs of data) 

 Gyro Range: 75 °/sec 

 Filter taps: 16 (minimum low-pass filtration) 

 Gyro Data 3: Data were taken from only the Z axis.  It will calculate 
the noise coefficients for the expected operation mode.  The following 
parameters were used: 

 Sample rate: 111 Hz (10 ms delay) 
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 Sample points 2,000,100 (~5 hrs of data) 

 Gyro Range: 75 °/sec 

 Filter taps: 64 (maximum low-pass filtration) 

2. Magnetometer Noise 

The magnetometer noise was tested in the same way as the gyro.  The 

same conditions exist for these tests as the gyro noise tests.  The only difference 

is the data was collected from the magnetometers and not the gyros.  Several 

tests were conducted using different sample rates and number of samples.   

 Magnetometer Data 1: Data were taken from only the Z axis 
magnetometer.  It was intended to find the variance in the measurements.  
The following parameters were used: 

 Sample rate: 115 Hz (10 ms delay) 

 Sample points: 2,000,100 (~4.8 hrs of Data) 

 Magnetometer Data 2: Data were taken from only the Z axis 
magnetometer.  It was intended to find the variance in the measurements and 
determine the effect of sample rate.  The following parameters were used: 

 Sample rate: 210 Hz (5 ms delay) 

 Sample points: 2,000,100 (~2.65 hrs of Data) 

3. Sun Sensor Noise 

The sun sensor noise is previously characterized by Sinclair 

Interplanetary.  Two tests are performed to ensure proper calibration of the 

sensor before it is shipped.  The first measures the noise across the entire field 

of view.  The test consists of a collimated light source moved across the sensors 

full field of view.  Readings are taken to determine the accuracy of the sensor at 

each position of the light source.  The dominating noise source is a spatial 

distortion due to variations in the optics and sensor electronics.  This noise is 

calibrated down to a 0.1 °rms.  The second test measures the time varying noise.  

The collimated light source is held in one position and data is taken to determine 

the noise level.  This noise is not significant when compared to the 0.1 °rms 

spatial noise.   
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4. Star Tracker Noise 

The star tracker was not purchased and so cannot be characterized.  For 

all modeling purposes, the star tracker noise is derived from the published 

accuracy. 

C. RESULTS & COMPARISON 

This section will show the results of the above data runs.  The calculated 

Allan variance plot and the statistics plots will be compared and explained. 

1. Allan Variance for Gyro 

The first objective for this testing was to verify that the calculations was 

providing accurate data.  To do this a data set was taken with parameters to 

closely mimic the same conditions of the manufacturer testing, this was Gyro 

Data 1.  The calculated Allan variance was then compared to the Allan variance 

provided on the specification sheet.  This comparison can be see in Figure 10 

and Figure 11. 

It is clear that the calculated Allan variance is very similar to the 

manufacturer’s Allan variance.  The noise coefficients from the calculated Allan 

variance plot were also checked against the specification sheet.  The ARW 

coefficient is 0.028 °/√sec while the specification is 0.033 °/√sec.  This is 

reasonably close to say that the difference is due to small variations in each unit.  

The bias stability coefficient was also found for comparison.  The coefficient from 

the calculations is 0.0052 °/sec while the specification is 0.007 °/sec.  This again 

seems within reasonably manufacturing variation.  It is, therefore, reasonable to 

validate the Allan variance calculations and assume further calculations will 

produce reasonable results. 
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Figure 10. Calculated Root Allan Variance from Gyro Data 1. 

 

Figure 11. ADIS16405 Root Allan Variance. From [13]. 

K = 0.00038

B = 0.0052 

N = 0.0028
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The next objective is to calculate the noise sources under parameters that 

more closely resemble the actual operating mode.  Gyro Data 2 is a data set 

taken under such conditions with minimal filtering applied.  This will help 

determine the effect of the low-pass filtering.  Figure 12 shows the root Allan 

variance plot and the noise coefficients. 
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Figure 12. Calculated Root Allan Variance form Gyro Data 2. 

The root Allan variance clearly maintains the overall shape seen in the 

previous figures.  It can also be seen that, except for ARW, the noise has been 

reduced.  The minimal low-pass filtering may be the cause of this.  The noise 

reduction does not appear dramatic, but could be significant for improved 

performance of the EKF.   

The last set of data, Gyro Data 3, was taken under operating parameters 

with full low-pass filtering applied.  It is expected that the filtering will further 

reduce the noise and improve performance.  Smaller values for all the noise 

coefficients will reflect this noise reduction.  The root Allan variance plot can be 

seen in Figure 13. 

N = 0.0028

B = 0.0038 

K = 0.00018
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Figure 13. Calculated Root Allan Variance from Gyro Data 3. 

The bias stability increased back to the value from Gyro Data 1 and the 

ARW stayed the same from Gyro Data 2.  The shape of the graph, however, has 

changed.  The RRW shown here is probably inaccurate.  The +1/2 slope that is 

normally seen on the Allan variance is either very short or is in the uncertainty of 

the Allan variance calculation.  The low-pass filtering appears to have reduced 

the RRW and possibly reduce other noises as well.  It also is possible the 

increase in bias stability noise is due to the elimination of RRW.  This change in 

noise source levels is not well understood.  The -1/2 slope line for the ARW does 

not appear to fit as well as it did on the other Allan variance plots.  This could 

mean that the ARW has been reduced slightly, at least for higher frequencies.   

These three root Allan variance plots clearly show the expected outcome.  

The low-pass filtering has significantly reduced the noise of the gyro 

measurements.  Table 11 shows a summary of the noise coefficients found from 

these three data sets.   

 

N = 0.0028

B = 0.0052 

K = 0.00018
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 ARW (°/√sec) Bias Stability (°/sec) RRW (°/√sec3) 

Gyro Data 1 0.028 0.0052 0.00038 

Gyro Data 2 0.028 0.0038 0.00018 

Gyro Data 3 0.028 0.0052 0.000184 

Table 11. Summary of Noise Coefficients. 

2. Verification of Gyro Model 

The noise coefficients from Gyro Data 2 was used in the Simulink® model 

because of its realistic parameters and high confidence in the results.  The 

simulated gyro noise and the tested gyro noise can be seen in Figure 14.  The 

mean was subtracted from each data set to better compare the random noise 

levels.  The Simulated and real noise are very similar, validating the Simulink® 

model.   
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Figure 14. Simulated Gyro without Bias and Actual Gyro Noise. 

                                            
4 This number is questionable due to the poor quality of data. 
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3. Statistical Analysis of Magnetometer 

The formulas and physical relationships have not been developed to use 

the Allan variance for a magnetometer.  More mundane methods will be used to 

analyze the magnetometer noise.  These will be the mean, to estimate the bias, 

the standard deviation and variance, to estimate the other noises.  Two data sets 

at different sample rates were taken from the magnetometer.  The statistics were 

calculated and the results are compared. 

Figure 15 shows the statistics from Magnetometer Data 1.  The mean (in 

green) is -161.1 mGauss, the 3σ (in red) or three times the standard deviation is 

4.57 mGauss, and the variance is 2.32 mGauss.  The graph on the left is a plot 

of the Z axis magnetometer over time and the graph on the right is a histogram of 

the same data to confirm the calculated statistics.   
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Figure 15. Statistics Graphs from Magnetometer Data 1. 

Figure 16 shows the statistics from Magnetometer Data 2.  The mean (in 

green) is -148.9 mGauss, the 3σ (in red) or three times the standard deviation is 

4.39 mGauss, and the variance is 2.146 mGauss.  The graph on the left is a plot 
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of the Z axis magnetometer over time and the graph on the right is a histogram of 

the same data to confirm the calculated statistics.   
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Figure 16. Statistics Graphs from Magnetometer Data 2. 

The standard deviation and variance were very close for both data sets.  

The means, however, were significantly different.  This is believed to be due to 

the test setup of the first data set.  The IMU was placed too close to some metal 

washers and the ferrous material corrupted the absolute measurement of the 

magnetic field.  This does not invalidate the data because it was constant 

throughout the test and therefore only changed the mean. 

4. Verification of Magnetometer Model 

Figure 17 shows the Simulink® model noise compared to the recorded 

noise.  The simulated noise has the same statistics as the two hardware data 

sets.  This validates the Simulink® Magnetometer model.   
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Figure 17. Simulated Magnetometer Noise and Actual Magnetometer Noise. 
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IV. NUMERICAL MODELING AND SIMULATION 

A. PURPOSE  

This chapter describes the general spacecraft model that was originally 

developed in [11] and has been subsequently further developed for this thesis.  

The notable additions include Earth’s magnetic field model, attitude sensors 

models, and the Extended Kalman Filter described in Chapter VI.  The model is 

run from a MATLAB® script file to set initial conditions and plot the results.  The 

Simulink® model is described first and focuses on the additions to the model.  

The TINYSCOPE Simulink® Model and MATLAB® script files can all be seen in 

the Appendix. 

B. SIMULINK MODEL 

1. Orbital Propagation 

The standard Euler’s Equation(2.1) were used to create the orbital 

propagation block.  The position vector R, the velocity vector V, were outputs for 

use in other blocks in the model.  This double integrator system allows for the 

propagation of any orbit by altering the position and velocity initial conditions.  

This flexibility is very useful when analyzing a wide variety of possible orbits.   

 3r


 R R  (2.1) 

Other orbital elements are also computed here.  The Beta angle (  ), 

which is the angle between the sun line and the subsolar point (SSP), and the 

True Anomaly ( ), which is the angle between the position vector and periapsis, 

are two of these.  They are calculated with Equations (2.2) and (2.3).  The non-

orbital elements, latitude and longitude are computed here as well for 

convenience.  The eccentricity (e) and inclination (i) of the orbit are predefined 

and constant for the purposes of the simulation.  
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  1sin sin sin cos cos sin sin sin cos sin cosu i u i u i        (2.2) 

Where the right ascension of the sun in the ecliptic plane is 

u=u0+ut ,u =0.985648 /mean solar day, the Earth spin axis tilt with respect to 

the ecliptic plane is 23.442   , and the right ascension of the line of nodes 

is    23.5 2
0 ,  9.9639 cos / 1 /mean solar day.t i e             Where the 

Earth angular radius is   1sin /e eR R h   .   

1cos
er

     
 

E R
 (2.3) 

where,     2 / /v r    E R R V V  and r is the magnitude of the position 

vector of the satellite. 

2. Environmental Effects 

This block models the space environment that the satellite will be 

experiencing.  It uses models developed from commonly known relationships.  

There are three aspects of the space environment were modeled; they are: the 

Earth’s Magnetic field, the Sun, and the Earth’s atmospheric density.   

a. Earth’s Magnetic Field Model 

The Earth’s magnetic field can be approximated by a magnetic 

dipole.  This model is not very accurate because the true magnetic field has 

many variations due to interactions from within the Earth as well as from outer 

space.  The dipole is, however, much easier to calculate and is accurate enough 

for the purposes of these preliminary simulations.  Equation(2.4)5 is the vector 

form of the magnetic dipole where m is the Earth’s vector dipole moment, 0 is 

the permeability of free space, and r


is the satellite position unit vector.  Because 

the Earth’s magnetic field is displaced by approximately 11.7° from the Earth’s 

                                            
5 The delta function is zero for the magnetic field except at the origin of the dipole.  Since the 

spacecraft would never be at the center of the Earth, this term was neglected. 
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axis, the dipole moment was rotated into the ECEF frame.  The transformation 

matrix used was Equation(2.5).  The position vector also had to be rotated from 

ECI to ECEF in Equation(2.6) using the Earth’s rotation 

rate, 7.2921e-005   rad/sec. 

     30 0
3

2
3

4 3
m m m r

r

 



   B r r

 
 (2.4) 

 

1 0 0

0 cos sin

0 sin cos

ecef
magT  

 

 
   
  

 (2.5) 

 

cos sin 0

sin cos 0

0 0 1

ecef
eciT

 
 

 
   
  

 (2.6) 

Another option tried was the World Magnetic Model 2005 from the 

Aerospace Blockset of MATLAB/Simulink® for its high fidelity.  It takes the 

altitude, the latitude, and the longitude of the spacecraft as inputs, all of which 

were derived from the position vector produced by the orbit propagator block.  

The output is the magnetic field vector in Geodetic coordinates.  Unfortunately, 

this model is too computationally intensive to be practical in the current 

implementation of the spacecraft model. 

b. Atmospheric Density 

A look-up table using atmospheric density data points from 100 to 

700 km approximates the nominal atmospheric density, ao .  This density is used 

as a starting point for Equation(2.7).  This equation takes into account the 

differences in density due to the sun and eclipse.  It also accounts for the beta 

angle.  The initial density is chosen based on the nominal altitude and the 

expected solar activity. 

  cos cos1.5a ao
    (2.7) 
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c. Solar Simulation 

The sun is simulated using two well known equations that describe 

the Sun Direction Vector of the body with respect to the orbital frame, 

Equation(2.8), and when the satellite is in eclipse, Equation(2.9).   

 

cos sin
ˆ sin

cos cos
BOC

 


 

 
   
  

bS  (2.8) 

 
cos

cos 0
cos




   (2.9) 

3. Dynamics and Kinematics 

This block uses standard equations to calculate the rigid body dynamics 

as well as the quaternion kinematics.   

a. Dynamics 

The Euler Equation(2.10) is used to calculate the nonlinear 

dynamics of the spacecraft.  These equations relate the applied torques to the 

spacecraft angular rates.  Only spacecraft rigid body dynamics are accounted for 

and all forces are measured along the three principle axes.   
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b. Kinematics 

This is the standard quaternion Equation(2.11) that relates the 

angular velocity and the current quaternion to produce the derivative of the 

quaternion.  This can then be integrated to produce the propagated quaternion. 
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4. Disturbance Torques 

These blocks calculate the three primary disturbance torques.  They make 

heavy use of the environmental blocks outputs discussed earlier. 

a. Gravity Gradient Torque 

This disturbance torque is due to gravity acting on the spacecraft.  

Variations in mass occur throughout any satellite and therefore gravity acts more 

strongly on certain parts of the spacecraft than others.  This gradient in strength 

of gravitational force causes a torque on the spacecraft body.  The standard 

equations for the gravity gradient disturbance torque are: 

 

 
 
 

2 3 1

1 3 23

31 2

0
3

where, 0

1

z y

GG x z BO

y x

J J c c c

T J J c c c C
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cJ J c c


                 
           

 (2.12) 

 

b. Aerodynamic Torque 

This disturbance torque is due to the inelastic impacts of molecules 

in the upper atmosphere onto the spacecraft.  These impacts transfer momentum 

from the molecule to the spacecraft causing a drag force.  The net drag force 

acts on the center of pressure located on the spacecraft face in the direction of 

travel.  The equation describing this torque on a spacecraft assuming flat 

surfaces is: 

     2

1

ˆ ˆ ˆˆ ˆ
N

aero a R R pi R i i R i
i

T V A H
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    V c V n V n
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 (2.13) 

 

 

ˆwhere,  and  is a unit vector along relative velocity of 

atmosphere WRT the spacecraft.
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c. Solar Torque 

This disturbance torque is very similar to the aerodynamic torque.  

The major difference is that the force acting on the spacecraft is due to the 

impingement of light from the sun.  The sun vector calculated in Equation(2.14) is 

used for this calculation. 

 

     
1
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    S c S n S n  (2.14) 
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c R R

S n
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5. Sensor Models for Simulations 

This block contains four different types of sensors.  A magnetometer, a 

gyroscope, a sun sensor, and a star tracker are simulated with noise sources.  

The goal was to create sensor simulations that would accurately mimic actual 

hardware. 

a. Gyroscope 

The gyroscope takes the angular velocity from the Euler Equations 

and adds noise to create a realistic measured .  Two types of noise are added 

to the signal, Angular Random Walk (ARW) and Bias.  The ARW is a zero-mean 

Gaussian random noise with a variance determined from Chapter III.  The bias is 

modeled as the integration of white noise with a variance called Rate Random 

Walk, also determined in Chapter III.  The integrator is initialized at the initial bias 

of the hardware.  These terms can be seen in mathematical model of the gyro 

from [24], Equation(2.15). 

 
sf ma v

u

     

 

    




  (2.15) 
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Where is the true angular rate, β is the bias, sf  is gyro scale factor errors, ma  is 

gyro misalignment errors, v is the ARW, and u is the RRW.  This equation was 

the basis for the Simulink® model of the gyro seen in Figure 18. 
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Figure 18. Realistic Simulink® Model for a Gyroscope. 

The ARW, RRW, and initial gyro bias can easily be seen in the 

model.  The gyro noise sources are “scaled” by 0.5
sT  like in [24].  This method 

uses the sample rate, sT , to correct the units of ARW (°/√s) and RRW (°/√s3) to 

°/s and °/s2 respectively.  The result produces realistic noise in the model.  The 

misalignment inaccuracies are added with a gain block in the model.  The gain 

is 3 3xI G , where the diagonal values of G are the percent error in scale factor 

and the off-diagonal values of G are the percent error of misalignment.  The 

gyroscope model also simulates the dynamic range of the hardware with a 

saturation block.  These all combined to create a realistic measurement ( ) to 

be used in the simulation. 

b. Magnetometer 

The magnetometer takes the B-field in the body frame, bB , adds 

realistic noise to simulate the actual magnetometer hardware characteristics.  

Equation(2.16) describes the model used as the basis for the Simulink® model in 



 

 42

Figure 19.  One noise source is added to bB , the output noise level, , of the 

magnetometer.  The specification sheet lists the output noise in rms, this is 

equivalent to the 1σ value of the noise.  The scale factor, sa , and 

misalignment, ma , error were also added into the model. 

 m b sf maB B        (2.16) 
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Figure 19. Realistic Simulink® Model for a Magnetometer. 

The magnetometer simulates other physical characteristics of the 

hardware.  A saturation block is used to limit the range.  The misalignment and 

scale factor inaccuracies are added with a gain block using the same equation as 

the gyro model.  These all combined create a realistic measured bB  to be used in 

the simulation. 

c. Sun Sensor  

The sun sensor does not add a Gaussian random noise to the 

measured signal because, as stated in Chapter III, the dominate noise is special 

in nature.  Also note there is no bias for a line-of-sight sensor.  The special noise 

was approximated with a modified Bessel function, Equation(2.17).  The 

important things to model were the wave like structure of the noise and the rms 

error of 0.1 °.  The result of the Bessel function was stored in a look-up table 

indexed by the coordinate of the Sun vector on the simulated sensor detector.  

The small angle approximation allows the 0.1 °rms error to be directly added to 

the measured Sun vector.  The other part of this simulation is determining if the 
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Sun is in view of the sensor.  First, it is determined if the spacecraft is in eclipse.  

This was described earlier in the Environmental Effects section.  Next, the sun 

vector must be changed into the body coordinates, bS .  This is done by 

multiplying by BNC .  Then it is rotated into the individual sensors frame.  Two sun 

sensors where simulated in this model, but more could easily be included.  The 

two sun sensors frames are set to maximize the time the sun will be seen by at 

least one sensor.  Then it can be determined if the Sun is in the sensor’s field-of-

view.  This is done by ensuring the bS is on the correct side if the spacecraft and 

is in the sensor’s field-of-view as in Equation(2.18).  

      
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 
 

  (2.17) 

Where  is the gamma function, v is a real constant, and r and θ are the radius 

and angle in polar coordinates respectively.   

 2 2 21 ,x x yS FOV FOV        (2.18) 

Where is the location on the detector and the – denotes a unit vector. 
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Figure 20. Realistic Simulink® Model for Two Sun Sensors. 
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Figure 21. One Sun Sensor Facing Block. 

d. Star Tracker 

The star tracker model used here is a much simpler one than in 

other simulations.  This is because the EKF developed here will assume the star 

tracker is a ”black box.”  That is to say that the EKF will only be a user of the star 

tracker solution and not be an integral part of the star tracker itself6. This will 

allow the EKF to work with any COTS star tracker that might be developed later.   

The star tracker will output a quaternion as many star trackers do, 

however, it will use Euler angles as an input.  This allows for easy application of 

the known error of the star tracker to the measured data.  A Gaussian random 

noise with a variance of ±70 arcsec is added to each Euler angle.  The angles 

are then used to calculate the measured quaternion.   

                                            
6 The EKF can be easily modified to be an integral part of a star tracker.  The EKF developed 

in [27], which this EKF relies heavily on, does just this. 
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Figure 22. Realistic Simulink® Model for Star Tracker. 

6. Gain Scheduled Quaternion Feedback Controller 

This block was developed in [11] and has not been modified for this thesis.  

No simulations will be done using the controller so it will not be included in this 

description.   

C. MATLAB® CODE 

The Simulink® Model used a number of MATLAB® M-files to both initialize 

the simulation and perform calculations.  Files that were not developed for this 

thesis will not be explained here.  All the code used for this thesis is in the 

Appendix. 

1. TINYSCOPE Main Script 

The TINYSCOPE Simulink® Model is initialized and run from 

TinyscopeMainScript.  This file has all the constants and parameters to run the 

simulation in it.  It also calls functions to perform specific calculations.   
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2. Euler to Quaternion 

This script is a function that is called both in TinyscopeMainScript and in 

various blocks of the TINYSCOPE Simulink® Model.  It takes the Euler angle 

vector and calculates the 3-2-1 sequence quaternion. 

3. Quat2Euler 

This script is used to convert a quaternion to an Euler angle in the 3-2-1 

sequence. 

4. Calculate 6U Spacecraft 

This script was developed in [11].  It generates the moment of inertia, 

center of gravity, and center of pressure for the TINYSCOPE model.   

5. Plotting Functions 

Several plotting function were developed to aid in presenting the 

simulation results.  These functions take in simulation data and generate a series 

of plots that display the data in a usable fashion.  Plotting functions developed 

here include: 

 PlotOrbit 

 PlotMeasurements 

 PlotEKFErrors 
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V. KALMAN FILTERING APPROACH TO STATE ESTIMATION 

A. BACKGROUND  

The Kalman Filter is a method to recursively estimate the state vector 

using stochastic processes.  The filter finds the optimum solution by minimizing 

the mean square error of the estimated state vector with a system model of the 

plant dynamics and sensor noise.  R. E. Kalman first developed this method in 

1960 [25].  Since then it has been used in multiple disciplines ranging from signal 

processing to spacecraft control.  It has also been expanded upon and further 

developed many times to now include very good nonlinear state estimators.   

The Kalman Filter uses a two-step process of predicting the state vector 

using a system model and updating the state vector using measurements (see 

Figure 23).  This means that only the previous state estimate need be stored until 

the next time step.  Thus, the recursive nature of the Kalman filter makes it easily 

implemented on a digital computer.   

 

Figure 23. Kalman Filter “Predict-Correct” Cycle. From [26]. 

This also leads to the advantage that multiple sensors of different types 

can be used to update the estimated state vector.  Through an error covariance 
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matrix, the confidence level of each measurement is tracked to appropriately 

weight the update.  When a low accuracy measurement is used to update the 

state vector, it can be weighted lower than the predicted model; while a very 

accurate measurement is weighted much more heavily then the predicted model.  

The result is an estimation that when properly implemented can provide more 

accurate state estimation then the direct measurements alone.   

B. DISCRETE EXTENDED KALMAN FILTER 

This section will show the structure of the Kalman Filter.  Specifically a 

formulation using discrete nonlinear plant dynamic models with discrete sensors 

will be shown.  This formulation is of interest because the implementation of the 

EKF developed will be on a microprocessor.  The digital nature of the 

microprocessor lends itself to discrete functions.  So, the spacecraft dynamics 

and kinematics are approximated with discrete nonlinear equations and the real 

sensors are discrete digital sensors.  The derivations have been done in 

numerous publications but for the purposes of consistency and simplicity all of 

these equations are from [27].   

To begin, the continuous nonlinear model and measurements are defined 

as: 

           , ,t t t t G t t x f x u w  (3.1) 

       ,t t t t y h x v  (3.2) 

Then using the first-order approximation of the nonlinear system dynamics f and 

nonlinear measurement h continuous Riccati equations with Equation(3.3), we 

can approximate the discrete Riccati equation with a Taylor-series expansion for 

exp(FTs) to the second term in Equation(3.4): 

    
ˆ ˆ

ˆ ˆ, ,F t H t
 

 
 x x

f h
x x

x x
 (3.3) 

 k sI FT    (3.4) 

Applying Equations (3.3) and (3.4) to Equations (3.1) and (3.2) leads to the 

discrete nonlinear system dynamic and measurement equations: 
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 1k k k k k k k      x x u w  (3.5) 

  k k k k y h x v  (3.6) 

Where wk & vk are zero-mean Gaussian noise process with covariances given by 

the expectation equations: 

   0,

,
T

k j
k

k j
E

Q k j


  

w w  (3.7) 

   0,

,
T

k j
k

k j
E

R k j


  

v v  (3.8) 

   0T
k kE v w  (3.9) 

The Qk matrix accounts for state process noise while the Rk matrix accounts for 

expected measurement noise.   

The current state will be propagated by estimating the truth model of 

Equation(3.5) with: 

 1
ˆ ˆ

k k k k k
 
    x x u  (3.10) 

The current state will be updated with a measurement, yk, in: 

 ˆ ˆ ˆ
k k k k k kK H      x x y x  (3.11) 

The gain Kk changes with time properly weighting the relative confidence of the 

accuracy of the propagated state verses the measured state.  To find Kk first the 

state error and error covariance matrixes must be defined: 

 1 1 1

1 1 1

ˆ ˆ

ˆ ˆ
k k k k k k

k k k k k k

   
  

   
  

   

   

x x x x x x

x x x x x x

 
 

 (3.12) 

 
   
   

1 1 1

1 1 1

T T
k k k k k k

T T
k k k k k k

P E P E

P E P E

     
  

     
  

 

 

x x x x

x x x x

   

   
 (3.13) 

Substituting Equations (3.5) and (3.10) into Equation(3.12) and substituting the 

resulting equation into Equation(3.13) leads to: 

 1
T T

k k k k k k kP P Q 
        (3.14) 
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Because wk and k
x  are uncorrelated the terms     0T T

k k k kE E  w x x w  .  To 

find the updated error covariance matrix, substitute Equation(3.6) into 

Equation(3.11).  Then substitute the resulting equation into Equation(3.12) and 

reduce, leads to: 

  ˆ
k k k k kP I K H P     x  (3.15) 

In order to actually calculate the gain K, the trace of the updated error covariance 

matrix must be minimized.  Solving gives: 

       1
ˆ ˆ ˆT T

k k k k k k k k k kK P H H P H R


       x x x  (3.16) 

The Continuous-Discrete Extended Kalman Filter is summarized in Table 

12.  The initialization of the EKF is important because the estimated state is 

assumed to be close to the true state.  Large initial condition errors on some 

nonlinear plants can cause instabilities in the EKF.  This can be avoided through 

simulation and testing. 

 Discrete Extended Kalman Filter 

Model 

  
1k k k k k k k

k k k kH
      

 

x x u w

y x v



 

Initialize 

 

 
    


  
0 0

0 0 0

ˆ ˆ

T

t

P E t t

x x

x x
 

Gain       1
ˆ ˆ ˆT T

k k k k k k k k k kK P H H P H R


       x x x
 

Update 

 

 
 

  

  

    
   

ˆ ˆ ˆ

ˆ

k k k k

k k k k k

K

P I K H P

x x y h x

x
 

Propagation 

 

1

1

ˆ ˆ
k k k k k

T T
k k k k k k kP P Q

 


 


   

     

x x u

 

Table 12. Discrete Extended Kalman Filter. From [27]. 
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C. CHALLENGES OF MULTIPLE SENSOR SYSTEM 

In the formulation of the above EKF, the sensors are modeled as discrete 

measurements.  This is a very good model for digital sensors or sampled analog 

sensors.  This type of sensor is ideal to be used with a Kalman filter implemented 

on the microprocessor.  There is, however, an inherent problem.  Different types 

of sensors produce solutions at different rates.  This causes a problem for a 

Kalman filter that has to have all of the measurements available to update the 

state vector.  A solution to this is to use superposition for the updates.  This is 

possible for an EKF because although it is modeling a nonlinear system it 

linearizes the propagation and update equations about the current state estimate.  

This technique of using superposition, was first suggested by James Murrell in 

[28].  It has since been applied many times and in different ways.   

The essence of the technique is to update the gain, error covariance, and 

state error vector with each successively available measurement.  Once all of the 

measurements have been taken into account, the EKF will propagate the 

estimated state and covariance matrix until the next measurement or set of 

measurements are available.  Interestingly, this also greatly reduces the 

computational burden.  Instead of calculating a gain matrix that requires an 

inverse of a 3n x 3n matrix, only a 3 x 3 matrix inverse is required n times with 

Murrell’s version.   
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VI. IMPLEMENTATION OF EXTENDED KALMAN FILTER FOR 
MULTI-RATE SENSORS 

The Discrete Extended Kalman Filter discussed in Chapter IV will form the 

bases of the EKF developed for this thesis.  The EKF developed here will use 

ideas and equations from several sources.  These include [14], [27],[29], and 

[30].  The combination of these different sources helps create an EKF that can 

handle data from gyros, star trackers, sun sensors, and/or magnetometers in an 

efficient way.  The goal of this EKF is to produce an accurate attitude estimates 

using a gyro and any combination of other sensors.  It will also be 

computationally efficient for implementation on a low power microprocessor. 

A. MUTIPLICATIVE QUATERNION EXTENDED KALMAN FILTER 

Because this EKF will use different types of sensors running at different 

rates and it will be implemented with on-board computation, a version of Murrell’s 

form briefly described in Chapter IV was used.  The basic structure and much of 

the derivation of this EKF comes from [27].  The significant changes occur in the 

formulation of the observation matrix Hk and the calculation of the residual, , for 

each of the sensor types.  To begin the derivation the state vector, Equation(4.1), 

was chosen to be composed of four quaternion elements and three gyro bias 

elements. 

 1 2 3 4

T

x y zq q q q      X  (4.1) 

Where the quaternion is defined by      4
ˆ sin / 2 cos / 2

T T
q     q e and 

follows the normalization 1T q q .  The normalization constraint prevents a simple 

calculation of the quaternion error by subtraction.  A different approach called the 

multiplicative error quaternion must be calculated.  This is defined as 

 1ˆ  q q q  (4.2) 

Where  4

T
q  q and the inverse quaternion is  1

4 
T

q  q .  Taking the 

time derivative yields: 
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 1 1ˆ ˆ     q q q q q   (4.3) 

This eventually gives the estimated quaternion kinematics7 

    1 1ˆ ˆ ˆˆ ˆ
2 2

    q q q  (4.4) 

        4 3 3

0
x

T T

q I   


 
      

          
q  (4.5) 

Now to find the discrete propagation of the quaternion kinematics 

Equation(4.4) will be expanded using the power series approach in 

Equation(4.6). 

 
   

 

 

 

2 2 1

ˆ

2

0

1 1
ˆ ˆ

2 2
2 ! 2 1 !

k k

t

k

t t
e

k k

  


 



                
  

  (4.6) 

Next substituting the identities     22
4 4ˆ ˆ1

k kk
xI     and 

     22 1 ˆ ˆ ˆ1
k kk        into Equation(4.6)  gives 

 
   

   
 

 

2 2 1

ˆ
12

4 4
0 0

1 1
ˆ ˆ1 1

2 2
ˆ ˆ

2 ! 2 1 !

k k
k k

t

x
k k

t t
e I

k k

  
 



  


 

            
   (4.7) 

Then simplifying with the cosine and sine functions leads to Equation(4.8). 

 
 

 
ˆ

2
4 4

1
ˆsin

1 2
ˆ ˆcos

ˆ2

t

x

t
e I t

 
 




 
       

 
 (4.8) 

Now the quaternion propagation can be simply written as  

  1
ˆ ˆˆk k k  

  q q  (4.9) 

Where ˆk
 and ˆ

k
q are the post-update estimates and  ˆk

  is defined in 

Equations (4.10) and (4.11).   

                                            
7 See [27] for more details. 
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  
3 3

1 ˆ ˆˆcos
2

ˆ
1ˆ ˆcos
2

x k k k

k
T

k k

I t

t






  



 

              
     

  

 (4.10) 

 

1
ˆ ˆsin

2ˆ
ˆ

k k

k

k

t 



 




  
    (4.11) 

The discrete sample time is denoted by t .  The next propagation models to be 

defined are the angular velocity and the gyro bias.  These models follow the 

standard EKF formulation given the post-update bias ˆ
k
 . 

 ˆ ˆ ˆˆk k k k k           (4.12) 

The error covariance propagation follows the same approach as in Chapter V.  

The discrete model is derived using a power series like was done for the 

quaternion update.  This leads to Equation(4.13) where k , kG , and kQ are 

defined in Equations (4.14), (4.15), and (4.16).   

 1
T T

k k k k k k kP P G Q G 
      (4.13) 

 

    

     

11 12

21 22

2

11 3 3 2

2

12 3 32 3

21 3 3

22 3 3

ˆ1 cosˆsin
ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ1 cos sin
ˆ ˆ

ˆ ˆ

0

k

kk

x k k

k k

k k k

k x k

k k

x

x

tt
I

t t t
I t

I


 

 

  
 

 



 
 

  

 

 

  
     

 
           

    
            

 

 

 (4.14) 

 3 3 3 3

3 3 3 3

0

0
x x

k
x x

I
G

I

 
  
 

 (4.15) 

 

 

2 2 3 2 2
3 3 3 3

2 2 2
3 3 3 3

1 1

3 2

1

2

u x u x

k

u x u x

t t I t I

Q

t I t I

  

 

                
      

  

 (4.16) 
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Where 2
 and 2

u are the variances  

Now the update equations need to be determined.  To start, the estimated 

error state definition is ˆ ˆˆ T T
k k k        x .  Using the small angle 

approximation /  2  and q4≈1, the four state quaternion has been replaced 

by the three state Euler error angle vector.  This minimizes use of the factors ½ 

and 2 in the EKF.  It also allows the 3σ bounds to be directly calculated from the 

error covariance matrix.   

The equations for the calculation of the observation matrix, Hk, for the 

different sensor types will now be derived.  First, it must be determined what 

each sensor is actually measuring.  The star tracker will provide a quaternion 

solution as its measurements, each sun sensor will provide a body vector 

referenced to the sun, and the magnetometer will also provide a body vector but 

referenced to the Earth.  If the star tracker were to provide body vectors 

referenced to the stars, its update would be the same as the sun sensor update.  

This dose, however, require access to the star catalog and since the star tracker 

is being treated as a black box this access cannot be assumed.  Next, the 

measurement model will be developed.  The definition of the measurement is 

  ˆ
k k k k y h x v  (4.17) 

For the star tracker that provides a quaternion as the measurement, 

Equation(4.17) becomes 

 k k k y q v  (4.18) 

The actual attitude quaternion, qk, is related to the propagated measurement, k
q  , 

through 

  k k k k k k        q q q q q q  (4.19) 

Using Equation(4.19) in the observation matrix definition Equation(4.20) leads to 

the observation matrix for the star tracker becoming 

    
ˆ

ˆ
ˆ

ˆ
k

k k
k k

k

H








x

h x
x

x
 (4.20) 
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     3 3

1ˆ 0
2

ST
k k k xH      

x q  (4.21) 

The sun sensor provides body vectors for which the true and estimated vectors 

are defined as 

    ˆ ˆ
k k k kA A  b q r b q r  (4.22) 

Where the actual attitude matrix,  kA q , and the estimated attitude matrix,  ˆ
kA q

, 

are related through 

      ˆ
k k kA A A q q q  (4.23) 

With the error-attitude matrix approximated with 

    3 3k xA I   q  (4.24) 

By substituting Equations (4.23) and (4.24) into Equation(4.22) and using the 

result in Equation(4.20) the observation matrix for the sun sensors becomes 

     3 3
ˆˆ 0SS

k k k xH A      x q r  (4.25) 

Finally, the magnetometer also measures a body vector as defined in 

Equation(4.22).  However, due of the highly nonlinear nature of the Earth’s 

magnetic field and the resulting uncertainty in the estimated magnetic field it will 

be developed using the perturbation technique.  Start with the equations for 

propagated and measured magnetic field respectively. 

   I I I
k b I b I p m b I mB D B D B B D B       x  (4.26) 

Where I
bD is the transformation from inertial to body coordinates, I

b ID B is the 

estimation error, and p and m are the errors in the magnetic field model and 

measurement respectively.  Defining m p    , the residual becomes 

 I
b Iz D B     (4.27) 

The transformation error, I
bD , can be defined as the difference between the true 

inertial to body transform and the estimated inertial to body transform.  The  
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estimated transform can be written b I
c bD D .  Where b

cD is the transform from the 

body to computed coordinates.  Now, assuming b
cD  is made of small angles, the 

transformation error can be rewritten as 

  ˆ ˆI I I I
b k b b k bD I D D D                   (4.28) 

Where ˆk
    is the cross product matrix of Euler error angles.  Substituting 

Equation(4.28) into Equation(4.27) leads to 

   3 3
ˆ0b x kz B        x  (4.29) 

The observation matrix follows in Equation(4.30), since Bb is unknown Bm is 

substituted. 

   3 30B
k m xH B      (4.30) 

Finally, the remaining update equations need to be determined.  The 

standard EKF form for the error state vector update is . 

  ˆ ˆ
k k k k kK     x y h x  (4.31) 

Where, yk is the measurement and  ˆ
k k

h x is the estimated measurement.  For 

the star tracker the estimated measurement is the propagated quaternion, ˆ
k
q .  

For a body vector it has a form    ˆˆ
k k kA h x q r , where r is the propagated 

vector to the reference body, i.e. the Sun.  The bias update is  

 ˆ ˆ ˆ
k k k        (4.32) 

The quaternion update must us quaternion multiplication like the quaternion error 

did in Equation(4.2).  The quaternion update equation is  

 
 ˆ

ˆ ˆ ˆ
2

k

k k k


  


 
q

q q  (4.33) 

The error covariance matrix update and the gain calculation, both have the same 

form from Chapter V. 

  ˆ
k k k k kP I K H P     x  (4.34) 

       1
ˆ ˆ ˆT T

k k k k k k k k k kK P H H P H R


       x x x  (4.35) 
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The Discrete Multiplicative Quaternion Extended Kalman Filter equations 

are summarized in Table 13.   

 

Discrete Multiplicative Quaternion Extended Kalman Filter 

Initialize 
   
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0 0 0 0

0 0
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     

   

   
 

1

3 3

3 3

3 3

ˆ ˆ ˆ

1ˆ 0
2

ˆˆ 0

0

T T
k k k k k k k k k k

ST
k k k x

SS
k k k x

B
k m x

K P H H P H R

H

H A

H B


    

 

 

   
    

     
    

x x x

x q

x q r

 

Update 

 

 

 

ˆ ˆˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ
ˆ ˆ ˆ

2

ˆ

T T
k k k

k k k k k

k k k

k

k k k

k k k k k

K

P I K H P

 

  



  

 

  


  

  

     
    

  


 

   

x

x y h x

q
q q

x





 

Table 13. Discrete Multiplicative Quaternion Extended Kalman Filter. 
After [27]. 
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B. IMPLEMENTATION 

The EKF described in Table 13 is incomplete without some of the 

particular implementation items that must be addressed.  The initialization, 

expected measurement noise, and quaternion normalization are a few.  all be 

covered to help complete the full development of this EKF. 

1. Initialization 

In an EKF initialization can be very crucial to the performance.  Here the 

initial state was chosen to be  0 0 3 1
ˆ 0 x
 x q , where  0 3 10 1xq .  The error 

covariance matrix is a little more involved.  Since all of the noise sources in the 

sensors and propagation model have estimated variances (from Chapter III), an 

estimation can be calculated for the error covariance.  Using Farrenkopf’s 

steady-state analysis from section 7.2.4 in [27], one can calculate a rough 

estimate to the error covariance.  The following equation was used to estimate 

P0. 

  1/41/4 1/2 2 1/2
0 2n v u vP t t        (4.36) 

Where 2 2 2
n ST SS Mag      , 2

v is the variance associated with v , and 2
u is the 

variance associated with u both from Equation(2.15).   

2. Measurement Noise 

The expected measurement noise was calculated for each sensor in 

Chapter III.  They are used in the R matrix when the Kalman gain is calculated.  

Each estimated measurement noise matrix follows the form 

 2
3 3k xR I  (4.37) 

The actual values of noise variance used are summarized in Table 14. 
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Sensor Value Units

Star tracker 2 1.2797 8st E    
rad 

Sun Sensor 2 3.0462 6ss E    
rad 

Magnetometer 2 1.25 6mag E   tesla 

Table 14. Measurement Noise Variance Values. 

3. Quaternion Normalization 

The quaternion update used in the formulation of the EKF, Equation(4.33), 

is only guaranteed to be a unit vector to within the first-order.  This means 

normalization needs to occur to prevent the build up of computational errors.  

Two methods were used to help maintain a normalized quaternion.  The first 

method used does not formally normalize the quaternion, but reduces the error to 

order 3 / 32 .  This factor is suggested in [29], computed in Equation(4.38), and is 

multiplied by the quaternion update when ˆ ˆT
k k
 q q  falls between two predetermined 

error bounds.   

 
ˆ ˆ3ˆ ˆ
ˆ ˆ1 3

T
k k

k kT
k k

 
 

 

 
   

q q
q q

q q
 (4.38) 

The second method is the brut force normalization per Equation(4.39).  

The full normalization is only done when ˆ ˆT
k k
 q q  becomes greater than the upper 

error bound.  This reduces the computational burden for on-board processing 

because it is simple a scalar multiplied by a vector the majority of the time.  How 

often this is done should be determined through simulation to establish an 

acceptable error tolerance for the application.   

 
ˆ

ˆ
ˆ ˆ

k
k T

k k




 


q
q

q q
 (4.39) 
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4. Murrell’s Version 

The application of superposition to the EKF was discussed in Chapter IV.  

To actually implement it in the EKF some structural changes were made from the 

standard form.  The most significant change, however, is in the estimated error 

state update in Equation(4.31).  The update now must include any previous 

estimates of the error state from that set of measurements and only add error 

unaccounted for in these previous estimates.  Equation(4.40) replaces 

Equation(4.31) in the above EKF. 

  ˆ ˆ ˆˆ
k k k k k k k kK H           x x y h x x    (4.40) 
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VII. SIMULATION RESULTS 

The simulations performed here are only preliminary.  They have not been 

verified through a Monte Carlo simulation or hardware-in-the-loop simulations.  

No disturbance torques are applied during any simulation.  No control torque is 

applied during any of the simulations, as only the error between the true value 

and the estimated value is needed.  This means the no particular attitude is 

actively maintained, however, the satellite will be initialized nadir pointing and will 

rotate at orbital velocity.  This should maintain a nadir pointing attitude because 

there are no disturbances.  During each simulation selected sensors will be used 

in the EKF to estimate the attitude.  The estimate is compared to the actual 

attitude in Figure 24 and Figure 25 to form the errors.  Table 15 shows the 

simulation conditions for each run.  Additional Figures of simulation results are in 

the Appendix.   

 

Simulation Sensors8 

(ST, SS1, SS2, 

Mag) 

Initial ω9 

(inertial) 

Initial 

Attitude 

(inertial) 

EKF10 

 (Hz) 

Sensor11 

(Hz) 

1 (1,0,0,0) (0,2π/P,0) (0,0,0) 20 1 

2 (1,1,1,0) (0,2π/P,0) (0,0,0) 20 1,5,5 

3 (0,1,1,1) (0,2π/P,0) (0,0,0) 20 5,5,20 

4 (1,1,1,1) (0,2π/P,0) (0,0,0) 20 1,5,5,20 

Table 15. Simulation Conditions. 

                                            
8 1= On, 0 =Off 

9 2π/P is the orbital velocity wrt the inertial frame. 

10 The simulation and the EKF ran at the same speed. 

11 The sample rates of each selected sensor is shown in the order of column 1. 
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Figure 24. True Euler Angles in Inertial Frame12. 
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Figure 25. True Angular Rates in Inertial Frame. 

                                            
12 The jumps in angle is due to the range limitations of the sine and tan2 functions. 
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A. EKF PERFORMANCE WITH NOISY STAR TRACKER 

During this simulation, the EKF will only use the quaternion measurements 

from the star tracker.  This will set a baseline for other configurations to compare 

against.  The expected Euler angle error is less than 0.026 ° 1σ.  The rms value 

of the error will be calculated and used for comparison.  The 3σ boundaries (red) 

are directly calculated from the error covariance matrix.  Figure 27 and Figure 28 

show that the Euler error and the bias error are in fact well bound.  They also 

show that the rms error is within the expected limits.  An unexpected result is 

also apparent.  A spike in the error covariance, along with degradation in the 

Euler error at ~2853 sec occurs.  It has been determined the cause of this error is 

due to the scalar quaternion equaling zero at this point (see Figure 30).  This 

causes the gain to become very large and in turn cause the increase in P.  Figure 

29 and Figure 31 show a weakness of the EKF, it does not filter the gyro noise 

well because it is used in the propagation process and not as a measurement.  

This accounts for the minimal improvement in the Euler angle estimate over the 

star tracker expected error.   
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Figure 26. Simulation 1 Euler, Bias, and Angular Rate Error. 



 

 66

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

-0.05

0

0.05

X Euler Error 0.021415  rms

 
(D

e
g

)

Time (sec)

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

-0.5

0

0.5

Y Euler Error 0.030674  rms

 
(D

e
g

)

Time (sec)

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

-0.05

0

0.05

 Z Euler Error 0.020845  rms


 (

D
e

g
)

Time (sec)  

Figure 27. Simulation 1 Euler Angle Error with 3σ Boundaries. 
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Figure 28. Simulation 1 Gyro Bias Error with 3σ Boundaries. 
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Figure 29. Simulation 1 Gyro Rate Error. 

Figure 30 shows how the Gaussian noise in the Euler angles is no longer 

Gaussian in the quaternion.  Figure 31 can be used for comparison with the rate 

error in Figure 29.   
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Figure 30. Simulation 1 Star Tracker Quaternion Measurements. 
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Figure 31. Simulation 1 Gyro Rate Measurements. 

B. EKF PERFORMANCE WITH STAR TRACKER AND SUN SENSORS 

This second simulation makes the sun sensor measurements available to 

the EKF as well as the star tracker quaternion.  It is expected that an additional 

measurement will improve the estimate.  Again the Euler angle error and the bias 

error are well bound by the 3σ boundaries in Figure 33 and Figure 34.  The gyro 

bias rms error has improved from simulation 1.  The lack of improvement is due 

to the anomaly discussed earlier.  The sun sensors are unable to correct for this 

error because the satellite is in eclipse at the time.  This can be seen in Figure 36 

and Figure 37, i.e., at ~1800 seconds all measurements go to zero.   
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Figure 32. Simulation 2 Euler, Bias, and Angular Rate Error. 
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Figure 33. Simulation 2 Euler Error with 3σ Boundaries. 
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Figure 34. Simulation 2 Gyro Bias Error with 3σ Boundaries. 
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Figure 35. Simulation 2 Gyro Rate Error. 
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Figure 36. Simulation 2 Sun Sensor #1 Unit Vector Measurement. 
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Figure 37. Simulation 2 Sun Sensor #2 Unit Vector Measurement. 
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C. EKF PERFORMANCE WITH SUN SENSORS AND MAGNETOMETER  

During this simulation the sun sensor measurements and the 

magnetometer measurements will be used by the EKF to produce the estimate.  

The star tracker quaternion will not be used.  It is expected that this configuration 

will take longer to reach steady state and be less accurate than the star tracker.  

Figure 39 and Figure 40 show that the rms errors are significantly less accurate 

than Simulation 1 or 2.  What is interesting is that this simulation was more 

accurate than both ADCS “in a box” discussed in Chapter I.  It is clear where the 

eclipse occurs on all the Figures due to the increase in errors, however, one 

should note that an rms error of approximately 1 ° rms is still maintained with only 

the magnetometer measurements.   
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Figure 38. Simulation 3 Euler, Bias, and Angular Rate Error. 
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Figure 39. Simulation 3 Euler Error with 3σ Boundaries. 
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Figure 40. Simulation 3 Gyro Bias Error with 3σ Boundaries. 
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Figure 41. Simulation 3 Magnetometer Measurement. 

Note on Figure 41 that the range has been changed to ±5 mGauss (5x10-4 

Tesla) for the simulated magnetometer.  The hardware range of ±3.5 mGauss 

proved too small and saturation occurred.  This caused large errors in the state 

estimation.  It was determined that the simulation should be run simulating a 

similar magnetometer with a larger dynamic range.   
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Figure 42. Simulation 3 Error Covariance Matrix Normal. 

D. EFK PERFORMANCE WITH ALL SENSORS 

Now all of the available sensor measurements are used in the EKF.  It is 

expected that this configuration will produce the best estimate.  It is obvious, 

however, that this is not the case.  The Euler angle error is twice that of 

simulation 1.  Figure 44 shows that the Euler error is not very well bound by the 

calculated 3σ boundaries.  Figure 46 shows that the star tracker quaternion 

anomaly is still present, but no longer dominant.  It appears that the 

magnetometer error is dominating the other sensors.  The eclipse can also be 

clearly seen from 1800 to 3900 sec.  The relatively small error covariance values 

suggest a noise value is not being accurately estimated.  This is most likely from 

the magnetometer.  It has the highest sample rate and the most error in attitude 

estimation.  More work needs to be done on both the Earth’s magnetic field 

model and the magnetometer modeling to improve the performance of the EKF.   
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Figure 43. Simulation 4 Euler, Bias, and Angular Rate Error. 
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Figure 44. Simulation 4 Euler Error with 3σ Boundaries. 
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Figure 45. Simulation 3 Gyro Bias Error with 3σ Boundaries. 
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Figure 46. Simulation 4 Error Covariance Matrix Normal. 
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VIII. CONCLUSION 

A. SUMMARY 

The results from the simulations clearly show that the EKF developed 

requires more tuning to achieve the expected performance.  It has demonstrated 

utility in fusing the various sensors, but has not yet shown a great improvement 

in performance over the star tracker alone.   

The anomaly, due to the star tracker quaternion causing the error 

covariance to dramatically increase, was an interesting result.  A solution to this 

problem would be to use the centroids and star catalog of the star tracker like is 

done in [27].  This would avoid the problem encountered when the scalar 

quaternion equals zero.  This sets of a chain of events which results in the error 

covariance increasing as well as actual reduced accuracy of the estimate.  This 

only seems to occur because the scalar quaternion makes up the diagonal 

component of  ˆ
k
 q .  That makes the diagonal component of the Hk matrix zero, 

which is then used in the calculation of the gain.  The gain then affects both the 

estimated state update and the error covariance update.   

The solution to this problem requires the ADS have full access to all of the 

star tracker calculations and databases.  This would essentially integrate the star 

tracker into the ADCS computer.  An integrated ADS could then consist of star 

trackers, sun sensors, and magnetometers, as well as other sensors like horizon 

sensors, all connected and run by one processor to produce an attitude estimate.   

The gyro model has been a great success, however, for the ADIS16405 

hardware, modeling the bias instability may be more appropriate then the RRW.  

Modeling the bias instability would accurately account for the variations in the 

bias under all conditions.  As was seen in Chapter II, the RRW is not a 

dominating noise in this gyro and may even be able to be filtered out.  The bias 

instability, however, remains even with maximum filtering applied.   
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The magnetometer included in the ADIS16405 proved to have too small of 

a range for this application.  The placement of the magnetometer is also 

problematic.  The IMU is normally situated inside the spacecraft and given the 

small size of a CubeSat; it would consequently be close to magnetic interference 

from batteries and other electronics.  Therefore, it is recommended to use a 

separate, external magnetometer in the final design of this ADS.   

The general Simulink® simulation model has been significantly improved 

with the generalization done in the orbit propagation.  The addition of the Earth’s 

magnetic field and the improvement of the atmospheric density both provide a 

higher fidelity model of the space environment.   

This thesis has not achieved all that was set out to do, but it has 

accomplished much.  It has proven that data fusion is possible using Murrel’s 

technique.  It has also set ground work for the continued improvement and 

development of the TINYSCOPE Simulation.  Most importantly, it has shown that 

a CubeSat can indeed have high accuracy attitude determination using currently 

existing technology.   

B. FUTURE WORK 

1. Verification and Testing 

This thesis only presents preliminary results.  A full Monte Carlo 

verification of the EKF performance should be performed to provide detailed 

performance parameters for the EKF and the simulation.  Further verification of 

the EKF design can be performed with a 3-Axis Simulator.  Running the EKF in a 

hardware-in-the-loop simulation will provide more realistic performance 

information on the EKF. 

2. Further Develop Simulation 

The sensor models developed for this thesis went a long way to providing 

realistic measurements for the ADCS.  Further refinements to the Simulink® 

model can be made however.  The star tracker model is still a fairly simple model 
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and can be improved in many ways.  Different sensors should also be developed 

such as a horizon sensor.  The Earth’s magnetic field certainly needs to have a 

more accurate model developed.  A high order IGRF model should be developed 

that will provide a more realistic approximation of the actual magnetic field and 

can still run efficiently in the simulation.   

3. Hardware 

The development of new low cost, low power, miniature attitude sensors is 

accelerating.  Continued evaluation of these new sensors should be performed 

as well as testing of these new sensors for possible performance improvements.  

This would include the currently available prepackaged systems for CubeSats 

discussed in Chapter I.  The ultimate goal could be to develop a prepackaged 

ADS at NPS that could work with the proposed ACS developed in [31].  This 

would necessarily require implementation of the EKF developed in this thesis on 

a microprocessor like the MSP430 from TI. 
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APPENDIX 

A. ADDITIONAL SIMULATION RESULTS 

1. Simulation 1 
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Figure 47. Simulation 1 Gyro Bias. 
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Figure 48. Simulation 1 Error Covariance Matrix Normal. 
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2. Simulation 2 
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Figure 49. Simulation 2 Simulated Star Tracker Quaternion. 
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Figure 50. Simulation 2 Error Covariance Matrix Normal. 
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3. Simulation 3 

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
-0.6

-0.4

-0.2

0

0.2

0.4

X Rate Error 0.12937 /s rms


x (
/

se
c)

Time (sec)

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

-0.5

0

0.5

Y Rate Error 0.12937 /s rms


y (
/

se
c)

Time (sec)

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
-0.6

-0.4

-0.2

0

0.2

0.4

Z Rate Error 0.12938 /s rms


z (
/

se
c)

Time (sec)  

Figure 51. Simulation 3 Gyro Rate Error. 
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Figure 52. Simulation 3 Sun Sensor #1 Measurement. 
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Figure 53. Simulation 3 Sun Sensor #2 Measurement. 

4. Simulation 4 
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Figure 54. Simulation 4 Gyro Rate Error. 
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Figure 55. Simulation 4 Star tracker Quaternion Measurements. 
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Figure 56. Simulation 4 Sun Sensor #1 Measurement. 
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Figure 57. Simulation 4 Sun Sensor #2 Measurement. 
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Figure 58. Simulation 4 Magnetometer Measurement. 



 

 89

B. SENSOR DATA SHEETS 

This appendix contains all the data sheets for the selected sensors.   

1. Sinclair Interplanetary SS-411 

 



 

 90

2. AeroAstro Mini Star Tracker 
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3. NovAtel OEMV-1G 
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4. Analog Devices ADIS16405 
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C. SIMULINK® MODEL 
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Figure 59. TINYSCOPE Overall Simulink® Model. 
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2. Orbital Propagator 
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Figure 60. Orbital Propagator Block. 

3. Dynamics and Kinematics 

C_NB

7

EulerBN 321

6

w_BN

5

EulerBO 321

4

q_BO

3

q_BN

2

C_BO

1

Kinematics

omega_BN

omega_ON

C_BO

q_BN

q_BO

EulerBO321

EulerBN321

C_NB

Attitude Dynamics

Torques

Moments of  Inertia

initial inertial body rates

omega of orbit in inertial

w_BN

w_ON

omega of orbit in inertial

5

Initial inertial body rates

4

Moments of Inertia

3control torque

2

disturbance torque

1

 

Figure 61. Spacecraft Dynamics and Kinematics Block. 
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4. Environmental Effects 
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Figure 62. Environmental Effects Block. 
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5. Disturbance Torques 
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Figure 63. Disturbance Torque Block. 
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6. Attitude Sensors 
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Figure 64. Simulation Attitude Sensor Block. 

 

D. MATLAB® CODE 

1. Main Script 

%%  TINYSCOPE Main Script 
%    
%   Author: 
%   LCDR J. Allen Blocker 
%   Naval Postgraduate School 
% 
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%   LT Jason D. Tuthill 
%   Naval Postgraduate School 
% 
%   Thesis Advisor: 
%   Dr. Marcello Romano 
%   Naval Postgraduate School 
%    
%%  Format 
clear all 
close all 
clc 
  
global CONST 
R2D = 180/pi; 
D2R = pi/180; 
%%  Set Simulation Conditions 
  
    InitialEulerN = [0 0 0];%deg  
    ReferenceEuler = [0 0 0];%deg 
                                                        
                        
    Kp = .25; 
    Kd1 = .15;                                   
    Kd2 = .15;                                  
    Kd3 = .15; 
    Ki = .15;                                          
     
%***  Toggle switches turn the labeled functions on (1) or off (0).  
*** 
    Tgg_toggle      = 0;%                            
    Taero_toggle    = 0;% 
    Tsolar_toggle   = 0;% 
    timeOn          = 1; 
    taOn            = 0; 
    cboOn           = 0; 
    qbnOn           = 1; 
    qbnmOn          = 1; 
    rOn             = 0; 
    hOn             = 0; 
    e321On          = 1; 
    wbnOn           = 1; 
    tcOn            = 0; 
    hsOn            = 0; 
    wbnfOn          = 1; 
    biasOn          = 1; 
    biasfOn         = 1; 
    pdOn            = 1; 
    pnOn            = 1; 
    qbnfOn          = 1; 
    wbnmOn          = 1; 
    werrOn          = 1; 
    berrOn          = 1; 
    qerrOn          = 1; 
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%%  Set Constants 
    CONST.mu        = 398.6004418e12;%m^3/s^2     
    CONST.mu_moon   = 4.902802953597e12;%m^3/s^2 
    CONST.mu_sun    = 1.327122E20;%m^3/s^2 
    CONST.Re        = 6.378137E6;%m                 earth radius 
    CONST.Rs        = 1.4959787e11;%m               solar radius 
    CONST.J2        = 1.08262668355E-3;%            J2 term 
    CONST.J3        = -2.53265648533E-6;%           J3 term 
    CONST.J4        = -1.61962159137E-6;%           J4 term 
    CONST.SolarPress= 4.51e-6;%N/m^2                solar wind pressure 
    CONST.SOLARSEC  = 806.81112382429;%TU 
    CONST.w_earth   = [0;0;.0000729211585530];%r/s earth rotation 
    CONST.Cd        = 2.5;%                         Coefficient of Drag 
    CONST.Cr        = .6;%                          Coefficient of Re-
flect 
    CONST.OmegaDot  = 1.991e-7;%rad/s               ascending node ad-
vance for sun-synch 
     
%%  Set Orbital Elements 
    %Kep elements meters and radians (a,e,i,W,w,n) 
     
    h_p             = 500e3;%m                      altitude at perigee 
    h_a             = 500e3;%m                      altitude at apogee         
     
     
    RAAN = 0;%rad                                   Right Ascention  
    w = 0;%rad                                      argument of perigee  
    TAo = 0;%rad                                    true anomaly 
    Rp  = CONST.Re+h_p;%m                           radius of perigee 
    Ra  = CONST.Re+h_a;%m                           radius of apogee 
    e   = (Ra-Rp)/(Ra+Rp);%(m/m)                    eccentricity 
    a   = (Ra+Rp)/2;%m                              semi-major axis 
    ho  = sqrt(a*CONST.mu*(1-e^2));%mˆ2/s           initial angular mo-
mentum  
    P   = 2*pi*sqrt(a^3/CONST.mu);%sec              Orbit Period 
    i_sunsynch = acosd((CONST.OmegaDot*(1-e^2)^2*a^(7/2))... 
        /(-3/2*sqrt(CONST.mu)*CONST.J2*CONST.Re^2));%eqn 4.47 from Cur-
tis 
    i   = i_sunsynch*D2R;%deg (rad)                 orbit inclination 
     
    [Ro,Vo] = sv_from_coe(CONST.mu,[ho e RAAN i w TAo]);%    initial 
orbital state vector 
     
%%  Set ICs 
ON = DCM(1,-90)*DCM(3,TAo+90)*DCM(1,i*R2D); 
InitialEulerO = DCM2Eul(ON);   
w_BNo = [0;-2*pi/P;0];%rad   initial body rates 
w_ON =  [0;-2*pi/P;0];%rad 
  
%   Sensor parameters 
%   Gyro 
GYRO_Bias = (3*randn(3,1))*pi/180;  % + 3 deg(rad)/sec 
N_ARW = (0.029)*pi/180;                                                
K_RRW = (0.0002)*pi/180;                                     
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ARW = N_ARW^2;                      % angular white noise Variance 
RRW = K_RRW^2/3;                    % bias variance 
Gg = eye(3).*(-0.01+0.02*rand(3)) +... 
    (ones(3,3)-eye(3)).*(-0.0006+0.0012*rand(3)); %percent 
  
%   Magnetometer 
sigMag = 1.25e-7; 
%Mag_bias = (4*randn(3,1))*1e-7;     % Tesla, +/- 4 mguass 
Gm = eye(3).*(-0.02+0.04*rand(3)) +... 
    (ones(3,3)-eye(3)).*(-0.0028+0.0056*rand(3)); %percent 
  
%   Sun Sensor 
S1 = [0 20 0]'*pi/180; 
S2 = [0 160 0]'*pi/180; 
%Gss = eye(2).*(-0.02+0.04*rand(2)) +... 
%    (ones(2,2)-eye(3)).*(-0.0028+0.0056*rand(2)); %percent 
FOV = 0.7; 
sigSS = 0.1; 
J = Bessel(sigSS/3,FOV).*pi/180; 
  
%   Star Tracker 
sigST = 70 /3 /60 /60*pi/180;       %arcsec to rad (3sig) 
%Gst = eye(3).*(-0.02+0.04*rand(3)) +... 
%    (ones(3,3)-eye(3)).*(-0.0028+0.0056*rand(3)); %percent 
  
%   Kalman Filter 
dt = 0.05;                          %sec (20 Hz) model speed 
t_ekf = dt;                         %sec (20 Hz) ekf speed 
sig(1) = sqrt(ARW);                 %rad/sec^(1/2), ARW 
sig(2) = sqrt(RRW);                 %rad/sec^(3/2), RRW 
sig(3) = sigST;                     %rad, Star Tracker Error 
sig(4) = sigSS*pi/180;              %rad, Sun Sensor Error 
sig(5) = sigMag;                    %tesla, magnetometer error 
  
ReferenceOmega = w_ON; 
  
[qBNo] = Euler_to_Quaternion(InitialEulerN); 
[qBOo] = Euler_to_Quaternion(InitialEulerO); 
[ReferenceQuaternion] = Euler_to_Quaternion(ReferenceEuler); 
  
  
     
%%  Run Simulation 
[Spacecraft]= Calculate_6U_Spacecraft; 
  
J_Matrix = Spacecraft.MOI; 
  
[density_table] = GetDensity; 
  
RunTime = P;%sec  
  
tic 
sim('TinyscopeMainModel',RunTime); 
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Total_Model_time = toc 
factor = RunTime/Total_Model_time 
  
DisturbanceTorques.Tgg = Tgg; 
DisturbanceTorques.Taero = Taero; 
DisturbanceTorques.Tsolar = Tsolar; 
  
SensorMeasurements.ST = q_BNm; 
SensorMeasurements.Gyro = w_BNm; 
SensorMeasurements.bias = bias; 
SensorMeasurements.SS1 = ss1; 
SensorMeasurements.SS2 = ss2; 
SensorMeasurements.Mag = squeeze(Bm)'; 
  
EKFerror.bias = squeeze(b_err); 
EKFerror.rate = squeeze(w_err); 
EKFerror.quat = q_err; 
EKFerror.cov = Pdiag; 
EKFerror.Pnorm = Pnorm; 
  
FilterEst.Q = squeeze(q_BNf)'; 
FilterEst.Gyro = squeeze(w_BNf)'; 
FilterEst.bias = squeeze(bias_f)'; 
  
%%  Output Results 
  
%  PlotOrbit(R); 
%   
%  PlotEKFerrors(EKFerror,SimTime); 
%   
%  PlotMeasurements(SensorMeasurements,SimTime); 
   
%  PlotFilter(FilterEst,SimTime); 
  
%  PlotModelStats(w_BNs,Bs,SimTime); 
  
%  PlotQuaternion (squeeze(q_BNf)',q_BN,SimTime); 
  
%  PlotDisturbanceTorques (DisturbanceTorques,SimTime); 
  
%  PlotControlTorques (Tcontrol,SimTime); 
  
%  PlotTorques (DisturbanceTorques,Tcontrol,SimTime); 
  
%  PlotEulerAngles (Euler321,SimTime); 
%  
%  PlotQuatError (q_err, SimTime); 
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2. Attitude Matrix 

%#eml 
function att = ATT( quat )  
%% Making Attitude Matrix 
att = transpose(XI(quat)) * PSI(quat); 
return 
%---------------------------------------------------------------------- 

3. XI 

%#eml 
function xi = XI( quat ) 
%% Making Xi Matrix 
xi = [ quat(4)*eye(3) + SKEW(quat(1:3,1)) ; - quat(1:3,1)' ]; 
return 
%---------------------------------------------------------------------- 

4. PSI 

%#eml 
function psi = PSI( quat ) 
%% Making Psi Matrix 
psi = [ quat(4)*eye(3) - SKEW(quat(1:3,1)) ; - quat(1:3,1)' ]; 
return 
%---------------------------------------------------------------------- 

5. Skew 

%#eml 
function sk = SKEW( vec ) 
%   Check it is a 3x1 or 1x3 vector 
if ~(( (size(vec,1) == 3) && (size(vec,2) == 1) ) || ( (size(vec,1) == 
1) && (size(vec,2) == 3) )) 
    disp('not a vector'); 
    return 
end 
sk = [0      -vec(3)  vec(2); 
    vec(3)   0     -vec(1); 
    -vec(2)  vec(1)   0    ]; 
return 
%---------------------------------------------------------------------- 

6. Quaternion to Euler 

function euler = Quat2Euler( quat ) 
    euler=zeros(3,1); 
    a = 2*(quat(4)*quat(2)-quat(3)*quat(1)); 
    if a > 1 
        a = 1; 
    elseif a < -1 
        a = -1; 
    end 
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    euler(1)=atan2( 2*(quat(1)*quat(4)+quat(2)*quat(3)), 1-
2*(quat(1)*quat(1)+quat(2)*quat(2))); 
    euler(2)=asin(a); 
    euler(3)=atan2( 2*(quat(3)*quat(4)+quat(1)*quat(2)), 1-
2*(quat(2)*quat(2)+quat(3)*quat(3))); 
return 
%---------------------------------------------------------------------- 

7. Bessel 

function [J] = Bessel(sig_SS,FOV) 
%%  This function creates the spacial noise of the Sun Sensor 
  
r = linspace(eps,FOV); 
theta = linspace(0,2*pi)'; 
n = length(r); 
J = zeros(n,n); 
  
for i = 1:n 
    J(i,:) = besseli(rand(n,1),r*r(i))*cos(theta)*sig_SS; 
end 
J(:,1) = J(:,1)./norm(J(:,1)); 
J(1,2:n) = J(1,2:n)./norm(J(1,2:n)); 
return 
%---------------------------------------------------------------------- 

8. Multiplicative Quaternion Extended Kalman Filter 

function [wk1,qk1,biask1,Pk1] = EKF(wk1t,yk1,bs,S,Bk1,B,dt,sig,mflag) 
  
sig_v = sig(1); 
sig_u = sig(2); 
sig_st = sig(3); 
sig_ss = sig(4); 
sig_mag = sig(5); 
  
persistent qk biask wk Pk; 
% Initialize States and Measurement 
if isempty(qk) 
    qk = [0 0 0 1]'; 
    biask = zeros(3,1); 
    wk = wk1t; 
    sig_n=sqrt(sig_st^2+sig_ss^2+sig_mag^2); 
    Pk = 
dt^(1/4)*sig_n^(1/2)*(sig_v^2+2*sig_u*sig_v*dt^(1/2))^(1/4)*eye(6); 
  
    wk1=wk; 
    qk1=qk; 
    biask1=biask; 
    Pk1=Pk; 
    return; 
end 
  
MaxST = 1; 
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MaxSS = 3;          % Index of last sun sensor 
MaxMag = 4;         % Index of last magnetometer 
  
SSangles = [20;160];     % Sun Sensors fram angles 
SSaxis = [2; 2];        % Sun Sensor rotation axis 1 = x, 2 = y, 3 = z 
  
%% Propagation 
biask1 = biask; 
  
  
Skew_w = SKEW(wk); 
Mag_w  = norm(wk); 
  
psik = (sin(1/2*Mag_w*dt)/Mag_w)*wk; 
Omega = [cos(1/2*Mag_w*dt)*eye(3)-SKEW(psik) psik; 
        -psik'                 cos(1/2*Mag_w*dt) ]; 
qk1 = Omega*qk; 
  
Phi_11 = eye(3)-Skew_w*sin(Mag_w*dt)/Mag_w + Skew_w^2*(1-
cos(Mag_w*dt))/Mag_w^2;        % 7.59b 
Phi_12 = Skew_w*(1-cos(Mag_w*dt))/Mag_w^2 - eye(3)*dt -...               
7.59c 
    Skew_w^2*(Mag_w*dt-sin(Mag_w*dt))/Mag_w^3; 
Phi_21 = zeros(3);                                                  % 
7.59d 
Phi_22 = eye(3);                                                 % 
7.59e 
  
Phi = [Phi_11 Phi_12; Phi_21 Phi_22];                                % 
7.59a 
  
Gk = [-eye(3) zeros(3); zeros(3) eye(3)]; 
Qk = [ (sig_v^2*dt+1/3*sig_u^2*dt^3)*eye(3) -(1/2*sig_u^2*dt^2)*eye(3) 
; 
      -(1/2*sig_u^2*dt^2)*eye(3)             (sig_u^2*dt)*eye(3)      
]; 
  
Pk1 = Phi*Pk*Phi'+Gk*Qk*Gk'; 
  
%% Update Loop  -------------------------------------------------------
---- 
if(sum(mflag) >= 1) 
    Att = ATT(qk1); 
    delX = zeros(6,1); 
    for i = 1:MaxMag 
% Compute H matrix for Star Tracker Measurement -----------------------
---- 
        if( (mflag(i) == 1) && (i <= MaxST) )  
             
            Xi = XI(qk1); 
            H = [ 1/2*Xi(1:3,:) zeros(3,3) ];  
             
            R = sig_st^2*eye(3); 
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            % Gain 
            K = Pk1*H'/(H*Pk1*H' + R); 
  
            % Update 
            Pk1 = (eye(6) - K*H)*Pk1; 
  
            res = yk1(1:3,1) - qk1(1:3,1); 
            delX = delX + K*(res-H*delX); 
             
% Update for Sun Sensor Measurement -----------------------------------
---- 
        elseif( (mflag(i) == 1) && (i <= MaxSS) )   % to max number of 
Sun Sensors 
             
            H = [ DCM(SSaxis(i-MaxST),SSangles(i-MaxST))*SKEW(Att*S) 
zeros(3,3) ]; 
  
            R = sig_ss^2*eye(3); 
  
            % Gain 
            K = (Pk1*H')/(H*Pk1*H' + R); 
  
            % Update 
            Pk1 = (eye(6) - K*H)*Pk1; 
  
            res = bs(:,i-MaxST) - DCM(SSaxis(i-MaxST),SSangles(i-
MaxST))*Att*S; 
            delX = delX + K*(res-H*delX); 
  
  
%   Update for Magnetometer Measurement -------------------------------
---- 
        elseif( (mflag(i) == 1) && (i <= MaxMag) )   % to max number of 
Magnetometers 
             
            H = [SKEW(Att*B) zeros(3,3)]; 
  
            R = sig_mag^2*eye(3); 
  
            % Gain 
            K = (Pk1*H')/(H*Pk1*H' + R); 
  
            % Update 
            Pk1 = (eye(6) - K*H)*Pk1; 
             
            res = Bk1 - Att*B; 
            delX = delX + K*(res-H*delX); 
        end 
    end 
    qk1 = qk1+1/2*XI(qk1)*delX(1:3,:); 
    qk1 = qnormalize(qk1'*qk1,qk1); 



 

 123

  
    biask1 = biask1 + delX(4:6,:); 
else 
  
end 
  
wk1 = wk1t - biask1; 
%   Save previous values 
qk = qk1; 
biask = biask1; 
wk = wk1; 
Pk = Pk1; 
  
return 
%----------------------------------------------------------------------
---- 
%% Normalizing routine for quaternions 
function qk1 = qnormalize(qnorm,qk1) 
while (qnorm) > 1  
    if qnorm > 1 + 1e-12 
        qk1 = ((3 + qnorm)/(1 + 3*qnorm))*qk1; 
        %   rescale quaternion to (err^3)/32 
    else 
        qk1 = qk1/sqrt(qnorm); 
        %   renormalize quaternion 
    end 
    qnorm = qk1'*qk1; 
end 
return 
%----------------------------------------------------------------------
---- 
%% Make Sun Sensor DCM 
function A = DCM(axis,a) 
A = zeros(3,3); 
switch axis 
    case 1 
        A = [1 0 0; 0 cosd(a) sind(a); 0 -sind(a) cosd(a)]; 
    case 2 
        A = [cosd(a) 0 -sind(a); 0 1 0; sind(a) 0 cosd(a)]; 
    case 3 
        A = [cosd(a) sind(a) 0; -sind(a) cosd(a) 0; 0 0 1]; 
end 
return 
%---------------------------------------------------------------------- 
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